原文作者:MattBornstein,GuidoAppenzeller,andMartinCasado
原文翻譯:阿法兔
A16Z最近又發了一篇有意思的文章,談到他們認為的生成式?AI?價值捕獲問題,比如說目前生成式?AI?在商業化落地存在哪些問題?價值捕獲最大的部分在哪?筆者翻譯后對部分內容進行了注解。
文章主要兩部分:第一部分,包括A16Z對生成式?AI?整個目前賽道的觀察,以及存在什么問題;第二部分除了問題之外,還講解了到底哪塊能捕獲最大的價值,無疑,得基礎設施者的天下
*本文版權歸A16Z所有,翻譯僅為供大家學習使用。
什么是生成式AI?
生成式?AI是機器學習的一個類別,計算機可以根據用戶的輸入/提示,生成原創的新內容。目前這項技術最成熟的應用主要在文本和圖像領域,不過幾乎所有的創意領域都有類似的進步,覆蓋動畫、聲音效果、音樂,甚至是對具備完整個性的虛擬人物進行原創。
a16z、區塊鏈協會均致函質疑美SEC擬議的收緊加密貨幣托管規則:5月9日消息,美國證券監管機構提出的一項收緊加密貨幣托管規則的提議遭到了至少兩名業內支持者的反對。5月8日,加密行業倡導機構區塊鏈協會(Blockchain Association)向SEC提交了一封信,批評其修改其監管規則的提議。3天前,Web3風險投資基金Andreessen Horowitz(a16z)也發出了一封類似的信函。區塊鏈協會政策律師Marisa Tashman Coppel于5月8日在推特上表示,SEC擬議的規定將“大幅減少對數字資產的投資”,并聲稱以目前的形式,該規定是“非法的”。在信中,區塊鏈協會提供了十幾個單獨的論據來反駁SEC。在其他聲明中,它表示該規則超出了SEC權限,將禁止顧問與加密貨幣交易所進行交易,并使投資者的資產面臨更大的風險。同一天,a16z總法律顧問Miles Jennings在推特上發布了其致SEC的信函,稱該公司“沒有含糊其詞”,并稱SEC的提議是“對加密貨幣發動戰爭的誤導和明顯的企圖。”a16z在其信中詳述了與區塊鏈協會類似的論點,但更側重于其對注冊投資顧問的影響,即顧問將被禁止使用加密貨幣,并且這些規則可能違反SEC對此類公司的注意義務。[2023/5/9 14:51:45]
第一部分:觀察和預測
a16z:加密仍處于早期階段,相當于互聯網的1995年:5月17日消息,a16z發布2022年加密貨幣概括報告。該報告指出,加密貨幣正處于第四個價格創新(price-innovation)周期之中,加密貨幣的價格可能會不穩定,但對于創業者來說,Web3仍然比Web2好。
2021年,Web3為創作者帶來的人均收益達到174,000美元,遠超Web2平臺(例如Spotify:636美元/藝術家,YouTube:2.47美元/頻道。)
DeFi也提升了金融的包容性。以太坊仍在Web3上占據主導地位,但競爭對手正在增多,包括Solana、Polygon、BNBChain、Avalanche和Fantom等區塊鏈的開發人員正在尋求復制以太坊的成功。
該報告總結部分表示,加密仍處于早期階段,a16z估計目前以太坊擁有700萬到5000萬的活躍用戶,相當于互聯網的1995年。[2022/5/17 3:22:41]
人工智能應用正在迅速擴大規模,而留存并沒有那么容易,并不是所有人都可以建立起來商業規模。
知情人士:a16z計劃向印度初創企業投資5億美元:5月3日消息,據 TechCrunch 援引知情人士報道,a16z 正計劃向印度初創企業投資 5 億美元。該知情人士還表示,a16z 在印度的合作伙伴已經開始與幾家印度初創公司接觸商談。
此前報道,1 月 8 日,a16z 宣布已為其 Venture、Growth 以及 Bio Funds 籌集了新的 90 億美元用于投資。新基金包括 15 億美元的生物基金、50 億美元的增長基金和 25 億美元的風險基金,將繼續投資于企業服務、金融科技、消費、Web3 以及生物醫療領域。[2022/5/3 2:46:49]
生成式?AI?技術的早期階段已浮現:
比如說,數以百計的新興?AI?創業公司正沖向市場,開始開發基礎模型,構建?AI?原生應用程序、基礎設施與工具。
當然,確實會有很多熱門技術趨勢,會出現過度炒作的情況。但生成式人工智能的蓬勃發展,已經能看到很多公司產生了實實在在的營收。
福布斯公布2022年百大風投人:A16z的Chris Dixon與Ribbit Capital的Micky Malka包攬前二:4月15日消息,福布斯近日公布了2022年百大風投人名單,其中A16z的Chris Dixon與Ribbit Capital的Micky Malka分別位列第一第二。據了解,二人都因為早期對Coinbase的押注而在2021年的IPO中獲得巨額回報,其中Chris Dixon還曾投資過Avalanche與Uniswap等知名加密項目,而A16z和Ribbit Capital都因廣泛押注加密賽道著稱。[2022/4/15 14:25:35]
例如,像?StableDiffusion?和?ChatGPT?這樣的模型創造了用戶增長的歷史記錄,有的應用在推出后不到一年,就達到了?1?億美元的年營收,并且人工智能模型在部分任務中的表現要比人類的水平高幾個數量級。
我們發現,技術范式轉型正在發生。但是,需要研究的關鍵問題在于:整個市場中,哪些地方會產生價值?
BRD CEO:偶然聽到a16z高管談論BTC,才改變看法決定進入加密領域:比特幣錢包BRD(之前稱為Breadwallet)聯合創始人兼首席執行官Adam Traidman在接受采訪時講述了他進入加密領域的歷程。他最初對比特幣的主流應用前景持懷疑態度,一名前員工向他提議一起開比特幣公司,但是他拒絕了。后來有一次Tradiman去向Andreessen Horowitz(a16z)推銷他所在的可穿戴設備公司,在去會議室的路上無意中聽到a16z高管之間關于BTC的對話,于是被說服,之后與朋友成立開源Breadwallet相關的公司。“這是一次偉大的旅程。我真希望自己能聰明一點,早點參與進來。”(Cointelegraph)[2020/6/15]
過去一年里,我們和幾十位生成式?AI?創業公司的創始人和大公司?AI?領域的專家。我們觀察到目前為止,基礎設施供應商很可能是這個市場上最大的贏家,因為基礎設施可以獲得經過整個生成式?AI?堆棧最多的流水和營收。
盡管主攻應用開發的公司收入增長非常快,但這部分公司往往在用戶留存、產品差異化和毛利率方面存在弱勢。而大多數模型供應商目前還沒有掌握大規模的商業化能力。
再說的準確一點,那些能夠創造最大價值的公司,比如說能夠訓練生成式人工智能模型,并將這種技術應用于新的應用程序,目前還沒有完全抓住行業中的的大部分價值。所以,現在想要預測后面的行業趨勢并不是那么容易。
但是,想辦法了解整個行業堆棧的哪些部分能做到真正的差異化,和可防御化很重要,因為這部分可以對整個市場結構和長期價值驅動力產生重大影響。
但迄今為止,除了現有公司傳統意義上的業務護城河,很難在堆棧上找到結構上可防御性。
我們看好生成式人工智能賽道,也堅信這個領域對各個行業產生巨大影響。這篇文章的撰寫目的,主要是為了描繪市場的動態,回答一些關于生成性人工智能商業模式更為廣泛的問題。
技術棧:基礎設施、人工智能模型和應用程序
想要了解生成式人工智能賽道和市場是如何形成的,首先需要定義目前整個行業的堆棧:
整個生成式人工智能的堆棧可分為三層:
1.將生成式?AI?模型,與面向用戶的產品應用集成,這種通常是運行自己的模型管道,或者依賴第三方?API
2.為人工智能產品提供動力的模型,以專有?API?或開源檢查點的形式提供
開放出來,要么需要把整個模型的構建方式以及預訓練的模保密,只開放一個接口?API,如果是前者的話,你就要自己去跑訓練/微調/推理,所以需要知道它能什么樣的環境、什么樣的硬件基礎上跑,所以需要有人提供一個托管平臺處理模型運行環境的事情)
3.為生成性人工智能模型運行訓練和推理工作負載的基礎設施供應商
需要注意的是,這塊我們講的并不是整個市場的生態圖,而是一個分析市場的框架,本文在每個類別中都列出了一些知名廠商的例子,不過沒有囊括列出目前所有最厲害的AIGC應用,也沒有深入討論?MLops?或?LLMops?工具,因為這塊還沒有達到完全成熟的標準化,有機會我們會繼續討論。
第一波的生成式人工智能應用開始形成規模化,但在留存和差異化方面卻不容易
在之前的技術周期中,傳統意義上的觀點會認為,想要建立大型的、獨立的公司,就必須擁有終端客戶,這里的終端客戶包括個人消費者和?B?2B買家。
因為這種傳統意義上的觀點,大家很容易也認為:生成式人工智能中最大的機會也在于能夠做面向終端用戶的應用的公司。
但是到目前為止,其實情況并不一定會這樣。
生成式人工智能應用的增長非常驚人,這種增長主要是由非常新穎和應用案例所驅動的,比如說圖像生成、文案寫作和代碼編寫,這三個產品類別的年收入已經超過了?1?億美元。
但是,光增長還不足以構建持久的軟件公司,關鍵在于,這種增長必須是有利潤,也就是說,用戶和客戶一旦注冊就可以產生利潤,并且這種利潤還需要能夠長期可持續。
如果公司之間不存在強大的技術差異化,B?2B和?B?2C應用程序只要通過網絡效應,和數據優勢,再或者構建愈發復雜的工作流程,從而獲得成功。
但是,在生成式人工智能領域,上述假設未必成立。在我們調研的做生成式人工智能?APP?的創業公司中,毛利率的變化范圍很廣,少數公司能達到?90%?,多數公司毛利率低至?50-60%?,這塊主要由模型成本影響。
盡管我們可以看到目前渠道頂端的增長,但是,還不清楚目前客戶獲取策略是否可以持續,因為已經看到了很多付費獲取的效率和留存率開始下降。
目前市面上的很多應用程序也確實缺乏差異性,因為這些應用主要依賴于相似的底層人工智能模型,并沒有發現明顯能夠具備獨家網絡效應、其他競爭對手很難復制的的殺手級應用和數據/工作流程。
因此,目前我們還不知道能夠建立可持續的生成式人工智能商業化業務的最佳實踐到底是什么,隨著語言模型的競爭和效率的提高,利潤率應該會提高。隨著那波僅僅因為人工智能的熱度才來的用戶逐步冷卻,離開市場,用戶留存率大概率會增加。并且,我們認為垂直整合的應用在制造差異化方面具備優勢,但是很多還需要接下來的實踐證明。
展望未來,生成式?AI?應用會面臨什么問題?
在垂直整合方面
如果人工智能模型作為一種消費型服務,應用開發者可以用小團隊模式快速迭代,并隨著技術的進步,逐步更換模型供應商。但還有開發者不同意,他們認為,產品就是模型,從頭開始訓練是創造可防御性的唯一途徑,這里指的是不斷地對專有產品數據進行再訓練。但這就需要更高的資本,并且需要穩定的產品團隊為代價的。
構建功能與應用程序
生成式人工智能產品具備很多形式:桌面應用,移動應用,Figma/Photoshop?插件,Chrome?擴展應用...甚至還包括?Discord?機器人。在用戶已經在應用、有使用習慣的地方整合人工智能產品比較容易,因為用戶界面較為簡易。但是,這些公司里有哪些會成為獨立的公司?哪些會被微軟或谷歌人工智能巨頭所吸納?
會和?Gartner?公司發布的炒作周期(hypercycle)一致?
尚且不清楚當前的用戶流失率,是不是都是早期人工智能產品所必須面對的,僅僅是我們當前這批人工智能產品所固有的。再或者,市場對生成式人工智能的興趣,是否會隨著市場炒作的消退而下降。這些問題,對開發?APP?應用程序公司存在重要的影響,包括何時選擇融資的時機、設計用戶獲取策略、對于用戶群的考慮有用戶的優先度,以選擇宣布產品市場匹配時機。
新加坡是全球對虛擬資產最為友好的司法轄區之一,一度被稱為“全球加密中心”。在經歷了2022年算法穩定幣TerraUSD的崩潰、對沖基金三箭資本的爆倉、借貸機構VoyagerDigital、Cel.
1900/1/1 0:00:00原文:《慢霧:盤點ZKP主流實現方案技術特點》 作者:慢霧安全團隊 概述 本文將為大家盤點各種ZKP實現的技術特點,希望能給大家的學習研究和工程開發帶來幫助.
1900/1/1 0:00:00撰文:Bankless聯合創始人DavidHoffman加密經濟系統必須找到平衡。為了使加密系統經受住時間的考驗,它們必須具有靈活性,以適應周圍不斷變化的環境。僵化是脆弱的.
1900/1/1 0:00:001.金色觀察|BNBGreenfield暴露了趙長鵬的哪些野心2月1日,?BNBGreenfield白皮書發布,這條定位于BNBChain側鏈的區塊鏈.
1900/1/1 0:00:00DeFi數據 1、DeFi代幣總市值:500.01億美元 DeFi總市值及前十代幣數據來源:coingecko2、過去24小時去中心化交易所的交易量52.
1900/1/1 0:00:00原文:《在Sui上構建Capy原型》 作者:Alan 在這個去中心化的游戲中,玩家購買、交易、繁殖和裝飾可愛的南美半水生嚙齒動物Capybaras.
1900/1/1 0:00:00