作者:胡璇 騰訊研究院高級研究員;胡曉萌 騰訊研究院研究員、博士后
內容生產,特別是創意工作,一向被認為是人類的專屬和智能的體現。牛津大學計算機學院院長邁克爾·伍爾德里奇2019年寫作的《人工智能全傳》一書中,“撰寫有趣的故事”被列為人工智能“遠未實現”的任務之一。
如今,AI正大步邁入數字內容生產領域。AIGC(AI Generated Content)不僅在寫作、繪畫、作曲多項領域達到“類人”表現,更展示出在大數據學習基礎上的非凡創意潛能。2023年3月15日,多模態信息處理標桿GPT-4模型正式發布,使生成內容的準確度及合規性進一步提升。數字內容生產的人機協作新范式正在形成,創作者和更多普通人得以跨越“技法”和“效能”限制,盡情揮灑內容創意。
也有人擔憂,AI是否會讓創作者們集體“失業”,甚至讓“創作”本身走向衰頹,就像機械復制時代的藝術品可能失去“靈韻”那樣。換言之,AIGC的流行給了我們一個重新審視“創作”是什么、是否為人所獨有這些問題的機會。
本文將分析AIGC改變數字內容創作的現狀、關鍵突破和挑戰,并嘗試探討以上問題。
數字內容正邁入強需求、視頻化、拼創意的升級周期,AIGC恰逢其會。線上生活成為常態,一方面,用戶創作內容大幅解放生產力,例如短視頻就是將原本需要長制作周期、高注意投入的視頻,變成了可以源源不斷產出的“工業品”和“快消品”;另一方面,作為核心的創意仍舊稀缺,需要新的模式輔助創作者持續產生、迭代和驗證創意。種種因素,都需要更加低成本、高效能的新工具與方式。
AIGC正在越來越多地參與數字內容的創意性生成工作,以人機協同的方式釋放價值,成為未來互聯網的內容生產基礎設施。
從范圍上看,AIGC逐步深度融入到文字、代碼、音樂、圖片、視頻、3D多種媒介形態的生產中,可以擔任新聞、論文、小說寫手,音樂作曲和編曲者,多樣化風格的畫手,長短視頻的剪輯者和后期處理工程師,3D建模師等多樣化的助手角色,在人類的指導下完成指定主題內容的創作、編輯和風格遷移工作。
Fantom基金會:Multichain與Fantom的橋接仍正常運行,正研究發行原生代幣:6月1日消息,Fantom基金會在推特上發文稱,如前所述,Multichain橋在Fantom上是完全可操作且安全的,沒有任何變化。在Multichain的推文中,Fantom并未被列為受影響的鏈之一。盡管如此,我們正在研究原生代幣的發行,并繼續(一如既往地)與多家橋接提供商保持聯系。
此前消息,Multichain表示,目前仍無法聯系到CEO獲得必要的服務器訪問權限,將在UI上對受影響的鏈暫停相應的跨鏈服務,包括Kekchain、PublicMint、Dyno Chain、Red Light Chain、Dexit、Ekta、HPB、ONUS、Omax、Findora、Planq。[2023/6/1 11:51:51]
從效果上看,AIGC在基于自然語言的文本、語音和圖片生成領域初步令人滿意,特別是知識類中短文,插畫等高度風格化的圖片創作,創作效果可以與有中級經驗的創作者相匹敵;在視頻和3D等媒介復雜度高的領域處于探索階段。盡管AIGC對極端案例的處理、細節把控、成品準確率等方面仍有許多進步空間,但蘊含的潛力令人期待。
從方式上看,AIGC的跨文字、圖像、視頻和3D的多模態加工是熱點。吳恩達(Andrew Ng)認為多模態是2021年AI的最重要趨勢,AI 模型在發現文本與圖像間關系中取得了顯著進步,如OPEN AI的CLIP能匹配圖像和文本,Dall·E生成與輸入文本對應的圖像;DeepMind的Perceiver IO可以對文本、圖像、視頻和點云進行分類。典型應用包括如文本轉換語音TTS(Text To Speech)、文本生成圖片(Text-to-Image),廣義來看AI翻譯、圖片風格化也可以看作是兩個不同“模態“間的映射。
THORChain發布“Terra LPers行動呼吁”,Terra流動性提供商需在Terra分叉前刪除所有流動性:5月18日消息,去中心化跨鏈交易協議THORChain發布“Terra LPers行動呼吁”,呼吁Terra流動性提供商刪除所有流動性。其中THORChain版本1.89已經發布,它將允許提現,有LUNA或UST的用戶將有時間退出流動性池,并且仍然有資格獲得Terra的5月27日空投快照,不過這必須在Terra分叉之前完成。流動性提供者需要在THORChain將Terra從網絡中清除之前按照指示及時提取,如果用戶遲到,將沒有資格申請快照,資金也可能會永遠丟失,此外如果流動性提供者不采取任何行動,其LUNA或UST的其余部分將退還到相關的錢包中。[2022/5/18 3:24:37]
上圖:原圖,AIGC的典型場景及發展趨勢,來自紅杉資本
下圖:使用有道智云AI翻譯后的結果
AIGC對創作者的解放體現在:“只要會說話,你就能創作”,無需懂得原理,不用學習代碼,或者Photoshop等專業工具。創作者以自然語言向AI描述腦海中的要素甚至想法(術語是給出“prompt”)后,AI就能生成對應的結果。這也是人機互動從打孔紙帶,到編程語言,圖形界面后的又一次飛躍。
自然語言是不同數字內容類型間轉化的根信息和紐帶,比如“貓”這個詞語就是加菲貓的圖片,音樂劇《貓》和無數內容的索引,這些不同的內容類型可以稱為“多模態”。
AIGC此輪浪潮,最大底層進化就在AI對自然語言“理解”和“運用”能力的飛躍,這離不開2017年Google發布的Transformer,它開啟了大型語言模型(Large Language Model,簡稱LLM)時代。有了這一強大的特征提取器,后續的GPT、BERT等語言模型突飛猛進,不僅質量高、效率高,還能以大數據預訓練+小數據微調的方式,擺脫了對大量人工調參的依賴,在手寫、語音和圖像識別、語言理解方面的表現大幅突破,所生成的內容也越來越準確和自然。
英國首家FCA注冊加密公司Archax籌集800萬美元資金:10月15日消息,受監管的英國加密資產公司Archax宣布已于種子輪融資800萬美元資金。投資公司包括Alameda Research、Amnis Ventures和Hudson Capital等。此前8月消息,英國監管機構授予加密資產公司Archax許可證,至此其成為第一家在FCA注冊的加密資產公司。(Decrypt)[2020/10/15]
但大模型意味著極高的研究和使用門檻,例如GPT-3有1750 億參數量,既需要大算力集群也不向一般用戶開放。2022年,部署在Discord論壇上、以聊天機器人形式提供的midjourney成為了第一個用戶友好型AIGC應用,帶來AI繪畫熱潮,一位設計師用其生成的圖片甚至在線下比賽中獲獎。
使用簡單文字即可交流的低門檻,類似搜索引擎的使用方式,一下子點燃了普通用戶對AI使用的熱情。緊接著,基于擴散模型(Diffusion Models)的一系列文本生成圖片(Text-to-Image)產品,如Stable Diffusion等,把AI繪畫從設計圈帶向大眾。開源的Stable Diffusion僅需一臺電腦就能運行,截至2022年10月已有超過20萬開發者下載,累計日活用戶超過1000萬;而面向消費者的DreamStudio則已獲得了超過150萬用戶,生成超過1.7億圖片。其驚艷的藝術風格、以及圖像涉及的版權、法律等問題也引發了諸多爭議。
Diffusion的震撼感還沒消散,ChatGPT橫空出世,真正做到和人類“對答如流”,能理解各式各樣的需求,寫出回答、短文和詩歌創作、代碼寫作、數學和邏輯計算等。不僅如此,人類反饋強化學習(RLHF)技術讓ChatGPT能持續學習人類對回答的建議和評價,朝更加正確的方向前進,因此以不到GPT3的1%的參數實現了極佳的效果。盡管ChatGPT仍存在一些缺陷,例如引用不存在的論文和書籍、對缺乏數據的問題回答質量不佳等,但它仍然是人工智能史上的里程碑,并上線兩個月后用戶數突破1億,成為史上用戶數增長最快的消費者應用。
DEX聚合器1inch.Exchange計劃推出代幣:7月26日,DEX聚合器1inch.Exchange官方宣布正在籌備推出1inchToken。數據顯示,1inch.Exchange累計交易額突破10億美元,其中上周交易量達2億美元。[2020/7/27]
在文、圖、視頻后,數字技術演進的重要方向是從“在線”走向“在場”,AIGC將成為打造3D互聯網的基石。人們將在在虛擬空間構建仿真世界,在現實世界“疊加“虛擬增強,實現真正的臨場感。隨著XR、游戲引擎、云游戲等等各種交互、仿真、傳輸技術的突破,信息傳輸越來越接近無損,數字仿真能力真假難辨,人類的交互和體驗將到達新階段。
目前AIGC在3D模型領域還處于探索階段,一條路徑是以擴散模型為基礎分兩步走:先由文字生成圖片,再生成包含深度的三維數據。谷歌和英偉達在這一領域較為領先,先后發布了自己的文字生成3D的AI模型。但從生成效果看,距離現在人工制作的3D內容的平均質量還有距離;生成速度也未能盡如人意。
2022年10月,谷歌率先發布了DreamFusion,但其缺點也很顯著,首先擴散模型僅對64x64的圖像生效,導致生成3D的質量不高;其次場景渲染模型不僅需要海量樣本,也在計算上費時費力,導致生成速度較慢。隨后,英偉達發布了Magic3D,面對提示語“一只坐在睡蓮上的藍色鏢蛙”,用大約40分鐘生成了一個帶有紋理的3D模型。相比谷歌,Magic3D生成速度更快、效果更好,還能在連續生成過程中保留相同的主題,或者將風格遷移到3D模型中。
Magic3D(第1、3列)與DreamFusion(第2、4列)對比
第二條路徑是借助AI來“合成”不同視角下同一物品的照片,從而直接生成3D。英偉達在2022年12月的NeurIPS 上展示了 生成式 AI 模型——GET3D(Generate Explicit Textured 3D 的縮寫),可根據其所訓練的建筑物、汽車、動物等 2D 圖像類別,即時合成 3D 模型。和上文中的輸出物相比,模型和紋理更精細,更采取了一般3D工具的通用格式,能直接用到構建游戲、機器人、建筑、社交媒體等行業設計的數字空間,比如建筑物、戶外空間或整座城市的 3D 表達。GET3D在 英偉達A100 GPU 上訓練而成,使用了不同角度拍攝的約 100 萬張照片,每秒可生成約 20 個物體。結合團隊的另一項技術,AI生成的模型能夠區分出物體的幾何形狀、光照信息和材質信息,使可編輯性大幅加強。
瀏覽器生態公鏈OdinChain主網正式上線:OdinChain將于北京時間2020年4月20日主網正式上線,同期開始通證映射,據了解,ODIN生態公鏈融合了區塊鏈技術和廣告發布智能合約技術,社區開發者可依托開放接口參與瀏覽器的開發;廣告主可自主投放廣告, 瀏覽器用戶可通過貢獻廣告的閱讀行為獲得TOKEN激勵,實現去中心化的廣告投放、可獲得獎勵的廣告瀏覽,讓生態參與者之間形成良性的價值傳遞。
同時,OdinChain也是首個采用貢獻度證明作為共識算法的公鏈,其機制為通縮機制,由此保證礦工的收益。[2020/4/20]
NVIDIA GET3D基于AI生成的模型示例
盡管如此,AIGC在3D側的能力,距離打造3D互聯網仍有不小的距離。而游戲中較為成熟的程序化內容生成(PCG,Procedural Content Generation)技術,可能是AIGC邁過深水區的一大助力。
從技術路徑上,AI生成3D難以沿用“大力出奇跡”的老辦法,即單靠喂給AI海量的輸入來提升效果。首先,信息量不同,一張圖片和一個3D模型相比相差一個維度,體現在存儲上就是數據量級不同;其次,圖片和3D的存儲及顯示原理不同,如果說2D是像素點陣在顯示器的客觀陳列,3D則是實時、快速、海量的矩陣運算,就像對著模型在1秒內進行幾十次“拍照”。為了準確計算得到每個像素點,“渲染”在顯示器上,需要考慮的因素至少有(1)模型幾何特征,通常用幾千上萬個三角面來表示(2)材質特征,模型本身的顏色,是強反射的金屬,還是漫反射的布料(3)光線,光源是點狀的嗎,顏色和強度如何。最后,原生3D模型的數據相對較少,僅游戲、影視、數字孿生等領域有少量積累,遠不如已存在了數千年、可以以非數字化形態存在的圖像那么多,例如ImageNet中就包含了超過1400萬張圖片。
用計算機幫助創作者這件事,游戲界已經探索了四十多年。用算法生成的游戲內容首次出現在1981年的游戲Rogue(Toy and Wichman)中,地圖隨機,每局不同。3D時代,程序化生成技術大量應用于美術制作,因為其需要巨額時間和人力成本,以2018年發售的游戲《荒野大鏢客2》為例,先后有六百余名美術參與,歷經8年才完成約60平方公里的虛擬場景。
程序化生成在效能和可控度上介于純手工和AIGC之間。例如2016年發布、主打宇宙探險的獨立游戲《無人深空》(No Man's Sky),用PCG構造了一系列生成規則和參數,聲稱能創造出1840億億顆不同的星球,每個星球都有形態各異的環境和生物。
游戲《無人深空》中使用程序化生成的海洋生物示例
2022年的Epic打造的交互內容《黑客帝國:覺醒》在最新虛幻引擎和程序化生成加持下,打造出栩栩如生、高度復雜的未來城市,共包括700萬個美術資產,包括7000棟建筑、38000輛可駕駛的車和超過260公里的道路,其中每個資產由數百萬個多邊形組成。
Epic使用虛幻5引擎和程序化生成技術高效制作《黑客帝國:覺醒》中的龐大城市
程序化生成和AI的結合更成為熱門學術領域,每年人工智能與游戲的頂級學會——IEEE Transactions on Games都會為程序化生成開辟專門的討論板塊。劇情、關卡、場景、角色,每個板塊都有大量的研究和實踐成果在推進。
關于創作,有一句經典論斷——天才是99%的汗水,加上1%的靈感。愛迪生認為那1%的靈感最重要。AIGC則向我們證明,99%的汗水能產生質變。善用AI的創作者,或許才是“完全體”。
首先,AI和自然人的創作過程,沒有那么大的差異:一部作品的誕生,一個作者的成長,都建立在大量對經典的觀察、參照、模仿、提煉基礎上,并非一蹴而就。而創新往往也有跡可循,或者是對主流的揚棄甚至反叛,或者是對多種元素的加成和融合。因此,如知識產權制度,也是在鼓勵創作的基礎上,給予貢獻者以對等的獎勵,而非一刀切地拒絕模仿。
其次,人作為創作核心這一點沒有變化:AI面向任務,人類面向創造。一方面,人類信息系統紛繁復雜,遠非幾個“prompt”輸入就能概括。正如一位網友說,AI代替不了我,因為它理解不了老板的需求。沒有五年經驗的乙方,也解讀不來甲方口中的“要大氣”。另一方面,AI成長的養料仍然由人提供,AI更可靠可信也依賴著人的使用與反饋。“斷奶”于2021年的ChatGPT可不知道2022年世界杯的戰果。
從實用的視角,AIGC將賦予普通用戶更多的創作權力和自由。從PGC、UGC到AIGC的發展路徑可見,普通人越來越多的參與到創作之中,數字內容不僅呈現數量上的指數級增長,類型和風格也走向了更加包容和多元的生態。未來,用戶可以使用手機拍攝的一系列照片,通過AIGC工具生成一個可以使用的3D渲染圖。采用這種創造內容的方式,我們可以想象未來的數字空間將不再完全由開發人員構建,而是利用AIGC響應用戶的輸入按需生成。
AIGC工具對專業人士的杠桿效應更顯著:如果對普通人的增益是從0到1,對專業人士則可能是從1到10,使他們能集中精力處理更頂層、更有價值的事情:比如立意,風格,構圖,元素組合和后處理,或者怎樣在前期制作盡可能多樣的demo來找尋更好的方案。運用AI也正成為新的職業能力,善于“施咒”的大觸們前赴后繼地開發著AI近乎無限的潛能,并社交平臺上留下讓人望洋興嘆的作品。
更長期看,創作和藝術的歷史是螺旋上升的歷史,是某一種風格數量極大豐富、質量巔峰造極之后的突破、突變與跨界,也是一個時代精神情感的凝結。我們有理由相信,AIGC變革下創新依舊存在,甚至會加速發展。
參考資料來源:
https://mp.weixin.qq.com/s/ZYSEou1ki0a4JVY2Nv8_SA.
https://zhuanlan.zhihu.com/p/388666777.
https://zhuanlan.zhihu.com/p/82758631.
https://zhuanlan.zhihu.com/p/493739360.
騰訊研究院
企業專欄
閱讀更多
金色財經 善歐巴
金色早8點
白話區塊鏈
Arcane Labs
Odaily星球日報
MarsBit
歐科云鏈
深潮TechFlow
BTCStudy
Tags:IGCAIGCHAAINigc幣價格AIGENIUS價格ChallengeDACBlockchainSpace
ARB空投馬上就可以領取了。如何更快地Claim?如何進行LP?如何更快地買入和賣出? 本文是一份快速指南.
1900/1/1 0:00:00撰文:Stephanie Dunbar、Stephen Basile編譯:BlockTurbo科學知識是支撐技術發展和經濟增長的公共產品.
1900/1/1 0:00:00圖片來源:由無界 AI 生成只需要輸入簡單的語言描述,短短幾分鐘后便可生成畫作。這種利用AI作畫的技術,以及與之相關的AIGC在去年底很快就火了起來,相關話題至今依然熱度不減.
1900/1/1 0:00:00標題:The Age of AI has begun作者:Bill Gates 2023年3月21日發表于蓋茨個人博客 翻譯:ChatGPT & 金色財經 在我一生中.
1900/1/1 0:00:00近期,以太坊Layer 2 擴展協議Arbitrum 空投成為了加密貨幣社區熱議的當紅話題。鏈上數據顯示,Arbitrum在3月22日的交易數超121萬筆,創歷史新高,同時超過以太坊主網的108.
1900/1/1 0:00:00作者:Flip Research 編譯:Biteye 核心貢獻者 Crush$ARB 空投可能是今年最熱門的空投之一.
1900/1/1 0:00:00