以太坊交易所 以太坊交易所
Ctrl+D 以太坊交易所
ads
首頁 > 火幣APP > Info

智能合約安全審計入門篇 —— 搶跑_MIT:BSP

Author:

Time:1900/1/1 0:00:00

背景概述

在上篇文章中我們了解了合約中隱藏的惡意代碼,本次我們來了解一個非常常見的攻擊手法 —— 搶跑。

前置知識

提到搶跑,大家第一時間想到的一定是田徑比賽,在田徑運動中各個選手的體能素質幾乎相同,起步越早的人得到第一名的概率越大。那么在以太坊中是如何搶跑的呢?

想了解搶跑攻擊必須先了解以太坊的交易流程,我們通過下面這個發送交易的流程圖來了解以太坊上一筆交易發出后經歷的流程:

可以看到圖中一筆交易從簽名到被打包一共會經歷 7 個階段:

1. 使用私鑰對交易內容簽名;

2. 選擇 Gas Price;

3. 發送簽名后的交易;

4. 交易在各個節點之間廣播;

5. 交易進入交易池;

6. 礦工取出 Gas Price 高的交易;

7. 礦工打包交易并出塊。

交易送出之后會被丟進交易池里,等待被礦工打包。礦工從交易池中取出交易進行打包與出塊。根據 Eherscan 的數據,目前區塊的 Gas 限制在 3000 萬左右這是一個動態調整的值。若以一筆基礎交易 21,000 Gas 來計算,則目前一個以太坊區塊可以容納約 1428 筆交易。因此當交易池里的交易量大時,會有許多交易沒辦法即時被打包而滯留在池子中等待。這里就衍生出了一個問題,交易池中有那么多筆交易,礦工先打包誰的交易呢?

礦工節點可以自行設置參數,不過大多數礦工都是按照手續費的多少排序。手續費高的會被優先打包出塊,手續費低的則需要等前面手續費高的交易全部被打包完才能被打包。當然進入交易池中的交易是源源不斷的,不管交易進入交易池時間的先后,手續費高的永遠會被優先打包,手續費過低的可能永遠都不會被打包。

那么手續費是怎么來的呢?

我們先看以太坊手續費計算公式:

Tx Fee(手續費)= Gas Used(燃料用量)*  Gas Price(單位燃料價格)

其中 Gas Used 是由系統計算得出的,Gas Price 是可以自定義的,所以最終手續費的多少取決于 Gas Price 設置的多少。

舉個例子:

例如 Gas Price 設置為 10 GWEI,Gas Used 為 21,000(WEI 是以太坊上最小的單位 1 WEI = 10^-18 個 Ether,GWEI 則是 1G 的 WEI,1 GWEI = 10^-9 個 Ether)。因此,根據手續費計算公式可以算出手續費為:

10 GWEI(單位燃料價格)* 21,000(燃料用量)= 0.00021 Ether(手續費)

Nameless創始人:許多NFT項目缺乏足夠的智能合約測試:金色財經報道,NFT鑄造平臺Nameless創始人Jimmy McNelis近日表示,許多NFT項目在缺乏足夠且適當的智能合約測試情況下匆忙上市,有些項目甚至會跳過審計環節,最終導致投資者遭受巨大損失,比如Akutars就因為合約漏洞問題導致 11,539 ETH(價值約 3400 萬美元)被永久鎖定。Jimmy McNelis指出,項目的測試階段非常關鍵,因為就技術和市場解決方案而言,它將真正決定你的發布或發布是否成功。(Cointelegraph)[2022/9/24 7:18:13]

在合約中我們常見到 Call 函數會設置 Gas Limit,下面我們來看看它是什么東西:

Gas Limit 可以從字面意思理解,就是 Gas 限制的意思,設置它是為了表示你愿意花多少數量的 Gas 在這筆交易上。當交易涉及復雜的合約交互時,不太確定實際的 Gas Used,可以設置 Gas Limit,被打包時只會收取實際 Gas Used 作為手續費,多給的 Gas 會退返回來,當然如果實際操作中 Gas Used > Gas Limit 就會發生 Out of gas,造成交易回滾。

當然,在實際交易中選擇一個合適的 Gas Price 也是有講究的,我們可以在 ETH GAS STATION 上看到實時的 Gas Price 對應的打包速度:

由上圖可見,當前最快的打包速度對應的 Gas Price 為 2,我們只需要在發送交易時將 Gas Price 設置為 >= 2 的值就可以被盡快打包。

好了,到這里相信大家已經可以大致猜出搶跑的攻擊方式了,就是在發送交易時將 Gas Price 調高從而被礦工優先打包。下面我們還是通過一個合約代碼來帶大家了解搶跑是如何完成攻擊的。

合約示例

// SPDX-License-Identifier: MITpragma solidity ^0.8.17;contract FindThisHash {    bytes32 public constant hash =        0x564ccaf7594d66b1eaaea24fe01f0585bf52ee70852af4eac0cc4b04711cd0e2;    constructor() payable {}    function solve(string memory solution) public {        require(hash == keccak256(abi.encodePacked(solution)), "Incorrect answer");        (bool sent, ) = msg.sender.call{value: 10 ether}("");        require(sent, "Failed to send Ether");    }}

Cardano生態DEXMinswap已遷移智能合約:金色財經消息,Cardano生態去中心化交易所Minswap發推稱,現已遷移智能合約,用戶的LP和挖礦頭寸會在接下來的24小時內逐步顯示。3月23日,Minswap表示,檢測到一個問題,DEX處于維護模式,已采取保護措施,正在重寫、測試和部署修復程序,目前用戶資金是安全的。[2022/3/24 14:16:03]

攻擊分析

通過合約代碼可以看到 FindThisHash 合約的部署者給出了一個哈希值,任何人都可以通過 solve() 提交答案,只要 solution 的哈希值與部署者的哈希值相同就可以得到 10 個以太的獎勵。我們這里排除部署者自己拿取獎勵的可能。

我們還是請出老朋友 Eve(攻擊者) 看看他是如何使用搶跑攻擊拿走本該屬于 Bob(受害者)的獎勵的:

1. Alice(合約部署者)使用 10 Ether 部署 FindThisHash 合約;

2. Bob 找到哈希值為目標哈希值的正確字符串;

3. Bob 調用 solve("Ethereum") 并將 Gas 價格設置為 15 Gwei;

4. Eve 正在監控交易池,等待有人提交正確的答案;

5. Eve 看到 Bob 發送的交易,設置比 Bob 更高的 Gas Price(100 Gwei),調用 solve("Ethereum");

6. Eve 的交易先于 Bob 的交易被礦工打包;

7. Eve 贏得了 10 個以太幣的獎勵。

這里 Eve 的一系列操作就是標準的搶跑攻擊,我們這里就可以給以太坊中的搶跑下一個定義:搶跑就是通過設置更高的 Gas Price 來影響交易被打包的順序,從而完成攻擊。

那么這類攻擊該如何避免呢?

修復建議

在編寫合約時可以使用 Commit-Reveal 方案:

https://medium.com/swlh/exploring-commit-reveal-schemes-on-ethereum-c4ff5a777db8

Solidity by Example 中提供了下面這段修復代碼,我們來看看它是否可以完美地防御搶跑攻擊。

// SPDX-License-Identifier: MITpragma solidity ^0.8.17;import "github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.5/contracts/utils/Strings.sol";contract SecuredFindThisHash {    // Struct is used to store the commit details    struct Commit {        bytes32 solutionHash;        uint commitTime;        bool revealed;    }    // The hash that is needed to be solved    bytes32 public hash =        0x564ccaf7594d66b1eaaea24fe01f0585bf52ee70852af4eac0cc4b04711cd0e2;    // Address of the winner    address public winner;    // Price to be rewarded    uint public reward;    // Status of game    bool public ended;    // Mapping to store the commit details with address    mapping(address => Commit) commits;    // Modifier to check if the game is active-ubxx    modifier gameActive() {        require(!ended, "Already ended");        _;    }    constructor() payable {        reward = msg.value;    }    /*       Commit function to store the hash calculated using keccak256(address in lowercase + solution + secret).       Users can only commit once and if the game is active.    */    function commitSolution(bytes32 _solutionHash) public gameActive {        Commit storage commit = commits[msg.sender];        require(commit.commitTime == 0, "Already committed");        commit.solutionHash = _solutionHash;        commit.commitTime = block.timestamp;        commit.revealed = false;    }    /*        Function to get the commit details. It returns a tuple of (solutionHash, commitTime, revealStatus);          Users can get solution only if the game is active-ubxx and they have committed a solutionHash    */    function getMySolution() public view gameActive returns (bytes32, uint, bool) {        Commit storage commit = commits[msg.sender];        require(commit.commitTime != 0, "Not committed yet");        return (commit.solutionHash, commit.commitTime, commit.revealed);    }    /*        Function to reveal the commit and get the reward.        Users can get reveal solution only if the game is active-ubxx and they have committed a solutionHash before this block and not revealed yet.        It generates an keccak256(msg.sender + solution + secret) and checks it with the previously commited hash.          Front runners will not be able to pass this check since the msg.sender is different.        Then the actual solution is checked using keccak256(solution), if the solution matches, the winner is declared,        the game is ended and the reward amount is sent to the winner.    */    function revealSolution(        string memory _solution,        string memory _secret) public gameActive {        Commit storage commit = commits[msg.sender];        require(commit.commitTime != 0, "Not committed yet");        require(commit.commitTime < block.timestamp, "Cannot reveal in the same block");        require(!commit.revealed, "Already commited and revealed");        bytes32 solutionHash = keccak256(            abi.encodePacked(Strings.toHexString(msg.sender), _solution, _secret)        );        require(solutionHash == commit.solutionHash, "Hash doesn't match");        require(keccak256(abi.encodePacked(_solution)) == hash, "Incorrect answer");        winner = msg.sender;        ended = true;        (bool sent, ) = payable(msg.sender).call{value: reward}("");        if (!sent) {            winner = address(0);            ended = false;            revert("Failed to send ether.");        }    }}

DFINITY開發與BTC區塊鏈交互的智能合約:2月24日,官方消息,DFINITY開發了一種直接與比特幣區塊鏈交互的系統,允許開發人員構建canister智能合約,該智能合約可以運行直接與BTC區塊鏈交互的代碼。[2022/2/24 10:12:05]

首先可以看到修復代碼中使用了結構體 Commit 記錄玩家提交的信息,其中:

commit.solutionHash = _solutionHash = keccak256(玩家地址 + 答案 + 密碼)[記錄玩家提交的答案哈希]

commit.commitTime = block.timestamp [記錄提交時間]

commit.revealed = false [記錄狀態]

下面我們看這個合約是如何運作的:

1. Alice 使用十個以太部署 SecuredFindThisHash 合約;

3. Bob 計算 solutionHash = keccak256 (Bob’s Address + “Ethereum” + Bob’s secret);

4. Bob 調用 commitSolution(_solutionHash),提交剛剛算出的 solutionHash;

5. Bob 在下個區塊調用 revealSolution("Ethereum",Bob's secret) 函數,傳入答案和自己設置的密碼,領取獎勵。

這里我們看下這個合約是如何避免搶跑的,首先在第四步的時候,Bob 提交的是(Bob’s Address + “Ethereum” + Bob’s secret)這三個值的哈希,所以沒有人知道 Bob 提交的內容到底是什么。這一步還記錄了提交的區塊時間并且在第五步的 revealSolution() 中就先檢查了區塊時間,這是為了防止在同一個區塊開獎被搶跑,因為調用 revealSolution() 時需要傳入明文答案。最后使用 Bob 輸入的答案和密碼驗證與之前提交的 solutionHash 哈希是否匹配,這一步是為了防止有人不走 commitSolution() 直接去調用 revealSolution()。驗證成功后,檢查答案是否正確,最后發放獎勵。

所以這個合約真的完美地防止了 Eve 抄答案嗎?

Of course not!

咋回事呢?我們看到在 revealSolution() 中僅限制了 commit.commitTime < block.timestamp ,所以假設 Bob 在第一個區塊提交了答案,在第二個區塊立馬調用 revealSolution("Ethereum",Bob's secret) 并設置 Gas Price = 15 Gwei  Eve ,通過監控交易池拿到答案,拿到答案后他立即設置 Gas Price = 100 Gwei ,在第二個區塊中調用 commitSolution() ,提交答案并構造多筆高 Gas Price 的交易,將第二個區塊填滿,從而將 Bob 提交的交易擠到第三個區塊中。在第三個區塊中以 100 Gwei 的 Gas Price 調用 revealSolution("Ethereum",Eve's secret) ,得到獎勵。

數據:智能合約中的LINK供應量比例刷新兩年高點:Glassnode數據顯示,智能合約中的LINK供應量比例已達到51.282%,刷新兩年高點。[2020/7/5]

那么問題來了,如何才能有效地防止此類攻擊呢?

很簡單,只需要設置 uint256 revealSpan 值并在 commitSolution() 中檢查 require(commit.commitTime + revealSpan >= block.timestamp, "Cannot commit in this block");,這樣就可以防止 Eve 抄答案的情況。但是在開獎的時候,還是無法防止提交過答案的人搶先領獎。

另外還有一點,本著代碼嚴謹性,修復代碼中的 revealSolution() 函數執行完后并沒有將 commit.revealed 設為 True,雖然這并不會影響什么,但是在編寫代碼的時候還是建議養成良好的編碼習慣,執行完函數邏輯后將開關設置成正確的狀態。

慢霧科技

個人專欄

閱讀更多

金色薦讀

金色財經 善歐巴

迪新財訊

Chainlink預言機

區塊律動BlockBeats

白話區塊鏈

金色早8點

Odaily星球日報

MarsBit

Arcane Labs

動態 | EOS Mediterranean 推出智能合約在線編輯器:據 IMEOS 報道,EOS Mediterranean 推出一款在線智能合約編輯器 Dev4eos,支持 EOS Mainnet,叢林測試網和麒麟測試網。團隊鼓勵用戶在 Github 上提交 issue。[2018/11/22]

Tags:BSPNBSMITCOMBSP價格nbs幣最新消息Remita CoinWCOM

火幣APP
Web3 Gaming:繼續旁氏還是真正去中心化?_NBS:BSP價格

原文作者:0xjereme & Leia  導讀: 為什么許多 Web3 游戲最終會成為曇花一現的產品,又或者成為旁氏的代言?這是因為它們本質上都是中心化的.

1900/1/1 0:00:00
站在Meme風口下 Ben是如何從無名小輩成為加密新傳奇?_MEM:NFT

撰文:wale.swoosh 編譯:Luffy,Foresight NewsBen 是加密世界新近崛起的一位傳奇人物.

1900/1/1 0:00:00
香港證監會重大宣布 允許虛擬資產交易平臺持牌上崗_穩定幣:虛擬資產

5月23日,香港證監會刊發適用于持牌資產交易平臺運營者的咨詢總結。鑒于公眾普遍支持有關建議,香港證監會將實施《適用于虛擬資產交易平臺營運者的指引》(簡稱《虛擬平臺指引》)以及《打擊洗錢指引》,該.

1900/1/1 0:00:00
從Layer1、側鏈、Plasma到Layer2 聊聊它們的概念、定義、演進過程和未來趨勢_以太坊:以太坊官網下載

其實這幾個概念已經很老了,為什么還要再單獨拿出來炒冷飯呢?因為這個月已經在兩個群里看到關于polygon到底是側鏈還是Layer2的爭論了,所以我先從這里開始入手.

1900/1/1 0:00:00
十五張圖看懂2022年加密VC的投資變化_WEB3:candylad幣上線那些交易所

原文作者:alex thorn原文編譯:DeFi 之道2022 年,加密 VC 向 Crypto 初創公司投去了總計 300 億美元的資金,這一數值與 2021 年的 310 億美元非常接近.

1900/1/1 0:00:00
共享排序器:Rollup漸進式去中心化解決方案_區塊鏈:比特幣

作者:563,Bankless;翻譯:金色財經xiaozou如果你是像我一樣的DeFi迷,你應該會喜歡有個好用的rollup,讓代幣互換、貸款、借款和交易體驗順暢無摩擦.

1900/1/1 0:00:00
ads